Determine the derivative of y(x)=37⋅2x.
Antwoord 1 correct
Correct
Antwoord 2 optie
y′(x)=37⋅2x.
Antwoord 2 correct
Fout
Antwoord 3 optie
y′(x)=37x2x−1.
Antwoord 3 correct
Fout
Antwoord 4 optie
y′(x)=ln(2)⋅2x.
Antwoord 4 correct
Fout
Antwoord 1 optie
y′(x)=37⋅ln(2)2x.
Antwoord 1 feedback
Correct: We use the scalar product rule with c=37 and u(x)=2x. In two steps we find y′(x) (possibly see Derivatives of elementary functions):
u′(x)=2xln(2)=ln(2)2x,y′(x)=37⋅ln(2)2x.
Go on.
u′(x)=2xln(2)=ln(2)2x,y′(x)=37⋅ln(2)2x.
Go on.
Antwoord 2 feedback
Wrong: You did use the scalar product rule, but the derivative of 2x is incorrect.
See Derivatives of elementary functions.
See Derivatives of elementary functions.
Antwoord 3 feedback
Wrong: You did use the scalar product rule, but the derivative of 2x is incorrect.
See Derivatives of elementary functions.
See Derivatives of elementary functions.
Antwoord 4 feedback