Determine the derivative of $y(x)=xe^x$.

$y'(x)=(1+x)e^x$

$y'(x)=e^x$

$y'(x)=2xe^x$

$y'(x)=xe^x$

Determine the derivative of $y(x)=xe^x$.

Antwoord 1 correct
Correct
Antwoord 2 optie

$y'(x)=e^x$

Antwoord 2 correct
Fout
Antwoord 3 optie

$y'(x)=2xe^x$

Antwoord 3 correct
Fout
Antwoord 4 optie

$y'(x)=xe^x$

Antwoord 4 correct
Fout
Antwoord 1 optie

$y'(x)=(1+x)e^x$

Antwoord 1 feedback

Correct: Via the product rule: $y'(x)=1\cdot e^x+x\cdot e^x=(1+x)e^x$.

Go on.

Antwoord 2 feedback

Wrong: $y(x)\neq e^x$.

See Product rule (film).

Antwoord 3 feedback

Wrong: The derivative of $x$ is not equal to $x$.

See Product rule (film).

Antwoord 4 feedback

Wrong: The derivative of $x$ is not $.


See Product rule (film).