Determine by the use of the property of the derivative for the function y(x)=3x2ln(x) how much x should approximately change to obtain the function value 312 given that x=1.
Δx12
Δx1
Δx12
Δx1
Determine by the use of the property of the derivative for the function y(x)=3x2ln(x) how much x should approximately change to obtain the function value 312 given that x=1.
Antwoord 1 correct
Correct
Antwoord 2 optie
Δx12
Antwoord 2 correct
Fout
Antwoord 3 optie
Δx1
Antwoord 3 correct
Fout
Antwoord 4 optie
Δx1
Antwoord 4 correct
Fout
Antwoord 1 optie
Δx12
Antwoord 1 feedback
Correct: Δyy(x)Δx.

Δy=312y(1)=312(312ln(1))=12.

y(x)=32x. Consequently, y(1)=321=1.

Hence, ΔxΔyy(1)=121=12.

Go on.
Antwoord 2 feedback
Wrong: Δy312y(1).

Try again.
Antwoord 3 feedback
Wrong: Δxy(1).

See Property derivative.
Antwoord 4 feedback
Wrong: Δxy(1).

See Property derivative.