Determine by the use of the property of the derivative for the function y(x)=3x−2ln(x) how much x should approximately change to obtain the function value 312 given that x=1.
Antwoord 1 correct
Correct
Antwoord 2 optie
Δx≈−12
Antwoord 2 correct
Fout
Antwoord 3 optie
Δx≈1
Antwoord 3 correct
Fout
Antwoord 4 optie
Δx≈−1
Antwoord 4 correct
Fout
Antwoord 1 optie
Δx≈12
Antwoord 1 feedback
Correct: Δy≈y′(x)⋅Δx.
Δy=312−y(1)=312−(3⋅1−2ln(1))=12.
y′(x)=3−2x. Consequently, y′(1)=3−21=1.
Hence, Δx≈Δyy′(1)=121=12.
Go on.
Δy=312−y(1)=312−(3⋅1−2ln(1))=12.
y′(x)=3−2x. Consequently, y′(1)=3−21=1.
Hence, Δx≈Δyy′(1)=121=12.
Go on.
Antwoord 2 feedback
Wrong: Δy≠312−y(1).
Try again.
Try again.
Antwoord 3 feedback
Antwoord 4 feedback