Consider the utility function $U(x,y)=\min\{2x,3y\}$. Determine the indifference curve with $U$-value 12.

$x=6, y\geq 4$ and $y=4, x> 6$

$x=6, y=4$

$x=3, y=2$

$x=3, y\geq 2$ and $y=2, x\geq 3$

Consider the utility function $U(x,y)=\min\{2x,3y\}$. Determine the indifference curve with $U$-value 12.

Antwoord 1 correct
Correct
Antwoord 2 optie

$x=6, y=4$

Antwoord 2 correct
Fout
Antwoord 3 optie

$x=3, y=2$

Antwoord 3 correct
Fout
Antwoord 4 optie

$x=3, y\geq 2$ and $y=2, x\geq 3$

Antwoord 4 correct
Fout
Antwoord 1 optie

$x=6, y\geq 4$ and $y=4, x> 6$

Antwoord 1 feedback

Correct:

$$\[ 
z(x,y)=\min\{2x,3y\}= 
\left \{ 
\begin{array}{ll} 
2x & {\rm if} \ 2x \leq 3y\\ 
3y & {\rm if} \ 2x > 3y. 
\end{array} 
\right . 
\]$$

Hence, $12=2x$, $12 \leq 3y$ and $12=3y$, $12 < 2x$, which gives $x=6, y\geq 4$ and $y=4, x> 6$.

Go on.

Antwoord 2 feedback

Wrong: This indifference curve does not consist of one point.

See Example 3 (film).

Antwoord 3 feedback

Wrong: This indifference curve does not consist of one point.

See Example 3 (film).

Antwoord 4 feedback

Wrong: Use the utility.

See Example 3 (film).