Consider the production function $P(L,K)=10L^{\frac{1}{4}}K^{\frac{3}{4}}$. Determine the marginal physical product of labor for $(L,K)=(16,256)$.
$20$
$3\frac{3}{4}$
$\dfrac{5}{64}$
$2\frac{1}{2}$
Consider the production function $P(L,K)=10L^{\frac{1}{4}}K^{\frac{3}{4}}$. Determine the marginal physical product of labor for $(L,K)=(16,256)$.
Antwoord 1 correct
Correct
Antwoord 2 optie
$3\frac{3}{4}$
Antwoord 2 correct
Fout
Antwoord 3 optie
$\dfrac{5}{64}$
Antwoord 3 correct
Fout
Antwoord 4 optie
$2\frac{1}{2}$
Antwoord 4 correct
Fout
Antwoord 1 optie
$20$
Antwoord 1 feedback
Correct: $MPP_L(L,K)=P'_L(L,K)=2\frac{1}{2}L^{-\frac{3}{4}}K^{\frac{3}{4}}$. Hence, $MPP_L(16,256)=20$.

Go on.
Antwoord 2 feedback
Wrong: That is the marginal physical product of capital, not of labor.

Try again.
Antwoord 3 feedback
Wrong: What is the $P'_L(L,K)$?

See Partial derivatives.
Antwoord 4 feedback
Wrong: Use $(L,K)=(16,256)$.

See Partial marginality.