Consider the utility function $U(x,y)=3x^3y^4$. Determine the marginal rate of substitution at $(x,y)=(4,1)$.
$\dfrac{3}{16}$
$3$
$\frac{3}{4}\cdot 4^{\frac{2}{3}}$
$\dfrac{3}{4}$
Consider the utility function $U(x,y)=3x^3y^4$. Determine the marginal rate of substitution at $(x,y)=(4,1)$.
Antwoord 1 correct
Correct
Antwoord 2 optie
$3$
Antwoord 2 correct
Fout
Antwoord 3 optie
$\frac{3}{4}\cdot 4^{\frac{2}{3}}$
Antwoord 3 correct
Fout
Antwoord 4 optie
$\dfrac{3}{4}$
Antwoord 4 correct
Fout
Antwoord 1 optie
$\dfrac{3}{16}$
Antwoord 1 feedback
Correct: $MRS(x,y)=\dfrac{U'_x(x,y)}{U'_y(x,y)}=\dfrac{9x^2y^4}{12x^3y^3}=\dfrac{3y}{4x}$.

Hence, $MRS(4,1)=\dfrac{3\cdot 1}{4 \cdot 4}=\dfrac{3}{16}$.

Go on.
Antwoord 2 feedback
Wrong: $(x,y) \neq (1,4)$.

Try again.
Antwoord 3 feedback
Wrong: $\frac{9x^2y^4}{12x^3y^3}\neq \frac{3}{4}x^{\frac{2}{3}}y^{\frac{4}{3}}$.

See Properties power functions.
Antwoord 4 feedback
Wrong: Use $(x,y)=(4,1)$.

Try again.