Introduction: A function of the form $y(x)=a^x$, where $a$ ($a \neq 1)$ is a positive number, is called an exponential function with base $a$.
Theorem: Exponential functions have the following properties:
- $a^x\cdot a^y=a^{x+y}$
- $a^{-x}=\dfrac{1}{a^x}$
- $\dfrac{a^x}{a^y}=a^{x-y}$
- $(a^x)^y=a^{xy}$
- $a^0=1$
Remark: Compare these properties with the Properties power functions.