Overslaan en naar de inhoud gaan
Home

Hoofdnavigatie

  • Home
  • Wiskunde is overal
Geef de woorden op waarnaar u wilt zoeken.
  1. Home
  2. For business economics
  3. Chapter 1: Functions of one variable
  4. Power functions and polynomial functions
  5. Power functions

Power functions

Introduction: Not every power function is integer.

Definition: A function of the form
\[
y(x)=x^{\frac{m}{n}},
\]
with $m$ and $n$ integer ($n \neq 0$), is called a power function.

Remark: If $\frac{m}{n}$ is not integer, then the domain is restricted to $x\geq 0$.

Example: $y(x)=x^{-\frac{5}{6}}=\dfrac{1}{\sqrt[6]{x^5}}$ is an example of a power function.

‹ Vorige paginaExercise
Volgende paginaExercise ›
Wiskunde Mathematics for business economics leeromgeving

 

  • Chapter 1: Functions of one variable
    • Definitions
    • Power functions and polynomial functions
      • Constant functions
      • Linear functions
      • Quadratic functions
      • Positive integer power functions
      • Polynomial functions
      • Negative integer power functions
      • Power functions
        • Exercise
        • Extra explanation: alternative notation
      • Properties power functions
    • Exponential and logarithmic functions
    • Applications
  • Chapter 2: Differentiation of functions of one variable
  • Chapter 3: Functions of two variables
  • Chapter 4: Differentiation of functions of two variables
  • Chapter 5: Optimization
  • Chapter 6: Areas and integrals

Footer-menu

  • Cookiebeleid en privacy
  • Disclaimer
Wiskunde D leeromgeving