Determine the derivative of y(x)=2x25x1 in x=1.
y(1)=1.
y(1)=5
y(1)=1.
y(1) does not exist, because the difference quotient goes to infinity if Δx goes to 0.
Determine the derivative of y(x)=2x25x1 in x=1.
Antwoord 1 correct
Correct
Antwoord 2 optie
y(1)=5
Antwoord 2 correct
Fout
Antwoord 3 optie
y(1)=1.
Antwoord 3 correct
Fout
Antwoord 4 optie
y(1) does not exist, because the difference quotient goes to infinity if Δx goes to 0.
Antwoord 4 correct
Fout
Antwoord 1 optie
y(1)=1.
Antwoord 1 feedback
Correct: For the difference quotient with start value x=1 and Δx we need y(1) and y(1+Δx):
y(2)=2(1)25(1)1=2,y(1+Δx)=2(1+Δx)25(1+Δx)1=2(12Δx+(Δx)2)5(1+Δx)1=2+4Δx2(Δx)2+55Δx1=2(Δx)2Δx+2.
Plugging these values into the difference quotient gives
ΔyΔx=y(1+Δx)y(1)Δx=2(Δx)2Δx+22Δx=2(Δx)2ΔxΔx=2Δx1.
If Δx0, then ΔyΔx1, hence y(1)=1.

Go on.
Antwoord 2 feedback
Wrong: Be careful when working out brackets. (1+Δx)21+(Δx)2.

See also Example.
Antwoord 3 feedback
Wrong: Pay attention to the order of y(1) and y(1+Δx) in the nominator of the difference quotient.

See also Difference quotient and Example.
Antwoord 4 feedback
Wrong: Be careful when working out brackets and when dealing with minus-signs. You probably made a mistake rewriting.

See also Example.