Consider the function y(x)=2+x25−3x3. Determine the derivative of this function.
Antwoord 1 correct
Correct
Antwoord 2 optie
y′(x)=−29x.
Antwoord 2 correct
Fout
Antwoord 3 optie
y′(x)=−3x4−18x2−10x9x6−30x3+25.
Antwoord 3 correct
Fout
Antwoord 4 optie
None of the other answers is correct.
Antwoord 4 correct
Fout
Antwoord 1 optie
y′(x)=3x4+18x2+10x9x6−30x3+25.
Antwoord 1 feedback
Correct: Write y(x)=u(x)v(x), where u(x)=2+x2 and v(x)=5−3x3. By the use of the quotient rule we then find:
u′(x)=0+2x=2xv′(x)=0−3⋅3x2=−9x2y′(x)=u′(x)v(x)−u(x)v′(x)(v(x))2=2x(5−3x3)−(2+x2)(−9x2)(5−3x3)2=10x−6x4+18x2+9x425−30x3+9x6=3x4+18x2+10x9x6−30x3+25.
Go on.
u′(x)=0+2x=2xv′(x)=0−3⋅3x2=−9x2y′(x)=u′(x)v(x)−u(x)v′(x)(v(x))2=2x(5−3x3)−(2+x2)(−9x2)(5−3x3)2=10x−6x4+18x2+9x425−30x3+9x6=3x4+18x2+10x9x6−30x3+25.
Go on.
Antwoord 2 feedback
Wrong: You need the quotient rule to determine the derivative of y(x). Note, if y(x)=u(x)v(x), then
y′(x)≠u′(x)v′(x).
See Quotient rule.
y′(x)≠u′(x)v′(x).
See Quotient rule.
Antwoord 3 feedback
Wrong: Pay attention to the order of u′(x)v(x) and u(x)v′(x) in the nominator of the fraction.
See Quotient rule.
See Quotient rule.
Antwoord 4 feedback
Wrong: The correct answer is among them. Maybe you have to rewrite your answer a little (work out brackets) to find the right form.
Try again.
Try again.