Consider the function c(q)=20√q+5q+100. Determine the derivative in q=4.
Antwoord 1 correct
Correct
Antwoord 2 optie
c′(q)=10√q+5.
Antwoord 2 correct
Fout
Antwoord 3 optie
This exercise cannot be solved, because the derivative of √q cannot be determined.
Antwoord 3 correct
Fout
Antwoord 4 optie
This exercise cannot be solved, because c(q) is the sum of three functions.
Antwoord 4 correct
Fout
Antwoord 1 optie
c′(4)=10.
Antwoord 1 feedback
Correct: Write c(q)=u(q)+v(q) with u(q)=20√q=20q12 and v(q)=5q+100. Then v(q) is again the sum of two functions: v(q)=w(q)+y(q), with w(q)=5q and y(q)=100. By the use of the Derivatives of elementary functions and the Scalar product rule we then find c′(q):
u′(q)=20⋅12q12−1=10q−12=10√qw′(q)=5y′(q)=0v′(q)=w′(q)+y′(q)=5c′(q)=u′(q)+v′(q)=10√q+5.
Finally, we plug in q=4:
c′(4)=10√4+5=102+5=5+5=10.
Go on.
u′(q)=20⋅12q12−1=10q−12=10√qw′(q)=5y′(q)=0v′(q)=w′(q)+y′(q)=5c′(q)=u′(q)+v′(q)=10√q+5.
Finally, we plug in q=4:
c′(4)=10√4+5=102+5=5+5=10.
Go on.
Antwoord 2 feedback
Wrong: You have to calculate the derivative in the point q=4, not the derivative function c′(q).
Try again.
Try again.
Antwoord 3 feedback
Wrong: The derivative of √q can be determined.
See Properties power functions or Derivatives of elementary functions: Example 2.
See Properties power functions or Derivatives of elementary functions: Example 2.
Antwoord 4 feedback
Wrong: Write c(q)=u(q)+v(q), with u(q)=20√q. Then write v(q)=w(q)+y(q) and apply the sum rule twice (once to determine v′(q) and once to determine c′(q)).
Try again.
Try again.