Consider the function $f(x,y) = 2^x + \ln(y-1) - 13$. Determine the function value if the first input variable ($x$) has a value of 3 and the second input variable a value of 2.
Antwoord 1 correct
Correct
Antwoord 2 optie
$\ln(2)-9$.
Antwoord 2 correct
Fout
Antwoord 3 optie
$(2,3)$.
Antwoord 3 correct
Fout
Antwoord 4 optie
The values of the input variables are outside the domain of the function $f(x,y)$.
Antwoord 4 correct
Fout
Antwoord 1 optie
$-5$.
Antwoord 1 feedback
Correct: $f(3,2) = 2^3 + \ln(2-1) - 13 = 8 + 0 - 13 = -5$.
Go on.
Go on.
Antwoord 2 feedback
Wrong: You have to determine $f(3,2)$, not $f(2,3)$.
Try again.
Try again.
Antwoord 3 feedback
Wrong: The function value is not equal to the value of the input variables.
See Functions of two variables.
See Functions of two variables.
Antwoord 4 feedback
Wrong: The domain consists of all the feasible combinations of $x$ and $y$. $x$ may take any value, while $y$ should be striclty greater than 1. Since $x=3$ and $y=2$, there is no problem with the domain.
Try again.
Try again.