Consider the function Z(x)=z(x,y(x)), where
z(x,y)=ln(x2+y3)andy(x)=10x2.
Determine Z(3).
Z(3)=133.
Z(3)=65.
Z(3)=12.
Z(3)=910.
Consider the function Z(x)=z(x,y(x)), where
z(x,y)=ln(x2+y3)andy(x)=10x2.
Determine Z(3).
Antwoord 1 correct
Correct
Antwoord 2 optie
Z(3)=12.
Antwoord 2 correct
Fout
Antwoord 3 optie
Z(3)=910.
Antwoord 3 correct
Fout
Antwoord 4 optie
Z(3)=133.
Antwoord 4 correct
Fout
Antwoord 1 optie
Z(3)=65.
Antwoord 1 feedback
Correct: The partial derivatives of z(x,y) at (x,y(x)) and the derivative of y(x) are:
zx(x,y)=1x2+y32x=2xx2+y3zx(x,y(x))=2xx2+(10x2)3zy(x,y)=1x2+y33y2=3y2x2+y3zy(x,y(x))=3(10x2)2x2+(10x2)3y(x)=2x.
According to the Chain rule (case 2):
Z(x)=2xx2+(10x2)3+3(10x2)2x2+(10x2)3(2x)=2xx2+(10x2)3+6x(10x2)2x2+(10x2)3=2x6x(10x2)2x2+(10x2)3.
Finally, we plug in x=3:
Z(3)=2363(1032)232+(1032)3=1210=65.
Go on.
Antwoord 2 feedback
Wrong: zx(x,y)1x2+y3 and zy(x,y)1x2+y3.

See Chain rule.
Antwoord 3 feedback
Wrong: Do not forget to apply the chain rule: special case 2.

See Chain rule (case 2), Example 1 and Example 2.
Antwoord 4 feedback
Wrong: It is given that x=3, not that y=3.

See Chain rule (case 2), Example 1 and Example 2.