Consider the function Z(t)=z(x(t),y(t)), where
z(x,y)=3x13y23,x(t)=8t3andy(t)=64t6.
Determine Z′(t).
According to the chain rule (case 1)
Z′(t)=z′x(x(t),y(t))x′(t)+z′y(x(t),y(t))y′(t).
Hence, we need the partial derivatives of z(x,y) at (x(t),y(t)), the derivative of x(t) and the derivative of y(t):
z′x(x,y)=3y23⋅13x13−1=x−23y23=(yx)23z′x(x(t),y(t))=(64t68t3)23=(8t3)23=4t2z′y(x,y)=3x13⋅23y23−1=2x13y−13=2(xy)13z′y(x(t),y(t))=2(8t364t6)13=2(18t3)13=22t=1tx′(t)=8⋅3t2=24t2y′(t)=64⋅6t5=384t5.
Now we find Z′(t) by plugging in the prescriptions z′x(x(t),y(t)), x′(t), z′y(x(t),y(t)) and y′(t):
Z′(t)=4t2⋅24t2+1t⋅384t5=96t4+384t4=480t4.
z(x,y)=3x13y23,x(t)=8t3andy(t)=64t6.
Determine Z′(t).
According to the chain rule (case 1)
Z′(t)=z′x(x(t),y(t))x′(t)+z′y(x(t),y(t))y′(t).
Hence, we need the partial derivatives of z(x,y) at (x(t),y(t)), the derivative of x(t) and the derivative of y(t):
z′x(x,y)=3y23⋅13x13−1=x−23y23=(yx)23z′x(x(t),y(t))=(64t68t3)23=(8t3)23=4t2z′y(x,y)=3x13⋅23y23−1=2x13y−13=2(xy)13z′y(x(t),y(t))=2(8t364t6)13=2(18t3)13=22t=1tx′(t)=8⋅3t2=24t2y′(t)=64⋅6t5=384t5.
Now we find Z′(t) by plugging in the prescriptions z′x(x(t),y(t)), x′(t), z′y(x(t),y(t)) and y′(t):
Z′(t)=4t2⋅24t2+1t⋅384t5=96t4+384t4=480t4.