Consider the function Z(t)=z(x(t),y(t)), where
z(x,y)=3x13y23,x(t)=8t3andy(t)=64t6.
Determine Z(t).

According to the chain rule (case 1)
Z(t)=zx(x(t),y(t))x(t)+zy(x(t),y(t))y(t).
Hence, we need the partial derivatives of z(x,y) at (x(t),y(t)), the derivative of x(t) and the derivative of y(t):
zx(x,y)=3y2313x131=x23y23=(yx)23zx(x(t),y(t))=(64t68t3)23=(8t3)23=4t2zy(x,y)=3x1323y231=2x13y13=2(xy)13zy(x(t),y(t))=2(8t364t6)13=2(18t3)13=22t=1tx(t)=83t2=24t2y(t)=646t5=384t5.
Now we find Z(t) by plugging in the prescriptions zx(x(t),y(t)), x(t), zy(x(t),y(t)) and y(t):
Z(t)=4t224t2+1t384t5=96t4+384t4=480t4.