A producer is a monopolist in the market and therefore he sets the price of the good. The demand function of this market is given by $y(p)=25-p$, $(0\leq p \leq 25)$. The cost function of the producer is given by $C(y)=y^2+5y$. Determine the maximum profit for this monopolist.
Antwoord 1 correct
Correct
Antwoord 2 optie
$0$
Antwoord 2 correct
Fout
Antwoord 3 optie
$34$
Antwoord 3 correct
Fout
Antwoord 4 optie
$112\frac{1}{2}$
Antwoord 4 correct
Fout
Antwoord 1 optie
$50$
Antwoord 1 feedback
Correct: $p(y)=25-y$ and hence, $R(y)=p(y)\cdot y=-y^2+25y$. Therefore,$\pi(y)=-2y^2+20y$. Then $\pi'(y)=-4y+20=0$ gives $y=5$. A sign survey shows that this is a maximum location. Then $\pi(5)=50$.
Go on.
Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Wrong: $y$ cannot be negative. Note that $R(y)=-y^2+25y$.
Try again.
Try again.
Antwoord 4 feedback
Wrong: Consider the minus-signs: $\pi(y)\neq-2y^2+30y$.
Try again.
Try again.