Consider a production process in which the cost of one unit of labor $L$ is $w=1$ and the cost of one unit of capital $K$ is $r=4$, and in which the relation between labor, capital and output quantity is described by the production function $P(L,K)=\sqrt{LK}$. Determine the minimum cost function.

$C(y)=4y$

$C(y)=5y$

$C(y)=2y$

$C(y)=16y$

Consider a production process in which the cost of one unit of labor $L$ is $w=1$ and the cost of one unit of capital $K$ is $r=4$, and in which the relation between labor, capital and output quantity is described by the production function $P(L,K)=\sqrt{LK}$. Determine the minimum cost function.

Antwoord 1 correct
Correct
Antwoord 2 optie

$C(y)=5y$

Antwoord 2 correct
Fout
Antwoord 3 optie

$C(y)=2y$

Antwoord 3 correct
Fout
Antwoord 4 optie

$C(y)=16y$

Antwoord 4 correct
Fout
Antwoord 1 optie

$C(y)=4y$

Antwoord 1 feedback

Correct: We solve the following cost minimization problem:

$\begin{array}{ll}
\mbox{minimize}           &C(L,K)=L+4K\\
\mbox{subject to}&\sqrt{LK}=y,\\
\mbox{where} & L>0 \ \mbox{and} \ K>0.
\end{array}
$

Since
\[
P_L'(L,K)=\frac{1}{2}L^{-\frac{1}{2}}K^{\frac{1}{2}}
\]
and
\[
P_K'(L,K)=\frac{1}{2}L^{\frac{1}{2}}K^{-\frac{1}{2}}
\]
it follows that
\[
MRTS(L,K)=\dfrac{\frac{1}{2}L^{-\frac{1}{2}}K^{\frac{1}{2}}}{\frac{1}{2}L^{\frac{1}{2}}K^{-\frac{1}{2}}}
=
\dfrac{K}{L}
\]

Subsequently, we determine the solutions of the system of equations corresponding to the first-order condition for cost minimization:
$$\left\{ \begin{array}{lll}
MRTS(L,K)&=&\dfrac{1}{4}\\
\sqrt{LK}&=&y
\end{array}\right.$$

From $\dfrac{K}{L}=\dfrac{1}{4}$ it follows that $L=4K$. Therefore, $y=\sqrt{4K\cdot K}=2K$, which gives $K=\frac{1}{2}y$. Consequently, $L=2y$.

Hence, $C(L,K)=C(2y,\frac{1}{2}y)=2y+4\cdot \frac{1}{2}y=4y$.

We have to verify whether this is indeed the minimum cost function. If $L=y$, then $y=\sqrt{yK}$, which gives that $K=y$. This would result in $C(L,K)=5y$.

If $L=4y$, then $y=\sqrt{4yK}$, which gives that $K=\frac{1}{4}y$. This would result in $C(L,K)=5y$.

Consequently, the minimum cost function is $C(y)=4y$.

Go on.

Antwoord 2 feedback

Wrong: Production can be cheaper.

See Example.

Antwoord 3 feedback

Wrong: $\sqrt{4K^2}\neq 4K$.

See Properties power functions.

Antwoord 4 feedback

Wrong: $2K=y$ and not $K=2y$.

See Example.