Which of the following functions has an inflection point on the interval [2,2]?
y(x)=2x315x2
y(x)=ex+5
y(x)=x3+1
y(x)=x2+3
Which of the following functions has an inflection point on the interval [-2,2]?
Antwoord 1 correct
Correct
Antwoord 2 optie
y(x)=e^x+5
Antwoord 2 correct
Fout
Antwoord 3 optie
y(x)=x^2+3
Antwoord 3 correct
Fout
Antwoord 4 optie
y(x)=2x^3-15x^2
Antwoord 4 correct
Fout
Antwoord 1 optie
y(x)=x^3+1
Antwoord 1 feedback
Correct: y''(x)=6x. Then y''(0)=0, y''(x)>0 for all x>0 and y''(x)<0 for all x<0. Hence, x=0 is an inflection point on the interval [-2,2].

Go on.
Antwoord 2 feedback
Wrong: y''(x)=e^x, and hence, y''(x)>0 on the interval [-2,2].

Try again.
Antwoord 3 feedback
Wrong: y''(x)=2 and hence, y''(x)>0 on the interval [-2,2].

Try again.
Antwoord 4 feedback
Wrong: The function has indeed an inflection point for x=2\frac{1}{2}, but this point is not on the interval [-2,2].

Try again.