The function z(x,y)=x2+y2 has exactly one minimum. Determine that minimum.
z(1,1)=2.
z(0,0)=0.
(x,y)=(1,1).
(x,y)=(0,0).
The function z(x,y)=x2+y2 has exactly one minimum. Determine that minimum.
Antwoord 1 correct
Correct
Antwoord 2 optie
(x,y)=(0,0).
Antwoord 2 correct
Fout
Antwoord 3 optie
z(1,1)=2.
Antwoord 3 correct
Fout
Antwoord 4 optie
(x,y)=(1,1).
Antwoord 4 correct
Fout
Antwoord 1 optie
z(0,0)=0.
Antwoord 1 feedback
Correct: z(0,0)=0 and z(x,y)0 for every other combination of x and y. Hence, z(0,0)=0 is the minimum of the function.

Go on.
Antwoord 2 feedback
Wrong: Note the difference between a minimum and a minimum location.

See Minimum/maximum.
Antwoord 3 feedback
Wrong: (1)21.

Try again.
Antwoord 4 feedback
Wrong: Note the difference between a minimum and a minimum location.

See Minimum/maximum.