We calculate the integral ∫1−∞(2x+e2x)dx.
From the table with antiderivatives of elementary functions it follows that 2x/ln2 is an antiderivative of 2x and that 12e2x is an antiderivative of e2x. Applying the sum rule gives that F(x)=2x/ln2+12e2x is an antiderivative of f(x)=2x+e2x.
In order to solve the improper integral ∫1−∞(2x+e2x)dx, we replace the infinite integration bound by a variable one t and solve the resulting integral.
∫1t(2x+e2x)dx=[2x/ln2+12e2x]x=1x=t=(2/ln2+12e2)−(2t/ln2+12e2t).
Since 2t→0 and e2t→0 if t→−∞, it follows that
(2/ln2+12e2)−(2t/ln2+12e2t)→(2/ln2+12e2)−(0+0).
Conclusion: ∫1−∞(2x+e2x)dx=2/ln2+12e2.