Determine the point of intersection of the graphs of the functions $f(x)=x+5$ and $g(x)=x+3$.
Antwoord 1 correct
Correct
Antwoord 2 optie
$0$
Antwoord 2 correct
Fout
Antwoord 3 optie
$(0,5)$
Antwoord 3 correct
Fout
Antwoord 4 optie
$(0,3)$
Antwoord 4 correct
Fout
Antwoord 1 optie
There is no point of intersection.
Antwoord 1 feedback
Correct: The graphs of the functions are parallel and do not intersect. This follows from the fact that we cannot find an $x$ such that
$$\begin{align}
f(x) = g(x) & \Leftrightarrow x+5 = x+3\\
& \Leftrightarrow 5=3
\end{align}$$
Clearly, there does not exist an $x$ such that the final equation is met, and hence, no $x$ such that $f(x)=g(x)$.
Go on.
$$\begin{align}
f(x) = g(x) & \Leftrightarrow x+5 = x+3\\
& \Leftrightarrow 5=3
\end{align}$$
Clearly, there does not exist an $x$ such that the final equation is met, and hence, no $x$ such that $f(x)=g(x)$.
Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Wrong: $f(0)=5$ and $g(0)=3$.
Try again.
Try again.
Antwoord 4 feedback
Wrong: $f(0)=5$ and $g(0)=3$.
Try again.
Try again.