Definition: If F(x) is an antiderivative of f(x), then the \emph}integral} of the function f(x) over the interval [a,b] is defined by ∫baf(x)dx=F(b)−F(a).
Remark 1: In stead of F(b)−F(a) we also write [F(x)]x=bx=a.
Remark 2: For calculating an integral of a function f(x) we only need one (of the infinitely many ) antiderivatives F(x)+c. For simplicity we normally choose c=0.
Example 1
∫21(3x2+2)dx=[x3+2x]x=2x=1=(23+2⋅2)−(13+2⋅1)=12−3=9.
Example 2
∫104exdx=[4ex]x=1x=0=(4e1)−(4e0)=4e−4=4(e−1).
Example 3
∫831√x+1dx=[2√x+1]x=8x=3=(2√9)−(2√4)=6−4=2.
Remark 1: In stead of F(b)−F(a) we also write [F(x)]x=bx=a.
Remark 2: For calculating an integral of a function f(x) we only need one (of the infinitely many ) antiderivatives F(x)+c. For simplicity we normally choose c=0.
Example 1
∫21(3x2+2)dx=[x3+2x]x=2x=1=(23+2⋅2)−(13+2⋅1)=12−3=9.
Example 2
∫104exdx=[4ex]x=1x=0=(4e1)−(4e0)=4e−4=4(e−1).
Example 3
∫831√x+1dx=[2√x+1]x=8x=3=(2√9)−(2√4)=6−4=2.