Calculate the integral $\int_0^1 (3x^2+e^x)dx$. (See Antiderivative for important information.)
$e$
$\frac{1}{2}(1+e)$
$1+e$
$-e$
Calculate the integral $\int_0^1 (3x^2+e^x)dx$. (See Antiderivative for important information.)
Antwoord 1 correct
Correct
Antwoord 2 optie
$\frac{1}{2}(1+e)$
Antwoord 2 correct
Fout
Antwoord 3 optie
$1+e$
Antwoord 3 correct
Fout
Antwoord 4 optie
$-e$
Antwoord 4 correct
Fout
Antwoord 1 optie
$e$
Antwoord 1 feedback
Correct: $\int_0^1 (3x^2+e^x)dx=[x^3+e^x]_{x=0}^{x=1}=(1+e)-(0+1)=e$.

Go on.
Antwoord 2 feedback
Wrong. Note that $(\frac{1}{2}e^x)'\not= e^x$.

See Derivatives of elementary functions and the scalar product rule.
Antwoord 3 feedback
Wrong. Note that $e^0=1$.

See Exponential functions.
Antwoord 4 feedback
Wrong. You need to calculate $F(1)-F(0)$ in stead of $F(0)-F(1)$.

See Integral.