Which of the following functions is a quadratic function of two variables, and what is the function value in $(x,y)=(1,2)$?
Antwoord 1 correct
Fout
Antwoord 2 optie
$z(x,y) = (x+y)^2-3$; the corresponding function value is $(1,2)$.
Antwoord 2 correct
Fout
Antwoord 3 optie
$z(x,y) = (x+y)^2-3$; the corresponding function value is 6.
Antwoord 3 correct
Correct
Antwoord 4 optie
$y(x) = -x^2 + 5x-3$; the corresponding function value is 6.
Antwoord 4 correct
Fout
Antwoord 1 optie
$z(x,y) = x^3 +xy + y^2 - 3x -5y + 7$; the corresponding function value is 1.
Antwoord 1 feedback
Wrong: Although $z(1,2)=1$, $z(x,y) = x^3 +xy + y^2 - 3x -5y + 7$ is not a quadratic function.
See Quadratic function of two variables.
See Quadratic function of two variables.
Antwoord 2 feedback
Wrong: $z(x,y)=(x+y)^2-3$ is indeed a quadratic function of two variables, but the function value is the value of the output variable, not of the input variables.
See Functions of two variables.
See Functions of two variables.
Antwoord 3 feedback
Correct: $z(x,y)=(x+y)^2-3 = x^2 + 2xy +y^2 -3$ is indeed a quadratic function of two variables. The function value is $z(1,2)=(1+2)^2-3=6$.
Go on.
Go on.
Antwoord 4 feedback
Wrong: $y(x)=-x^2 + 5x+2$ is a quadratic function of one variable, not of two.
See Quadratic functions of two variables.
See Quadratic functions of two variables.