Consider the function
$$z(x,y) = \big( 3y + 2x\big)^5.$$
Determine $z'_y(2,1)$.

$z'_y(2,1) = 61440.$

$z'_y(2,1) = 36015.$

$z'_y(2,1) = 12005.$

$z'_y(2,1) = 24010.$

Consider the function
$$z(x,y) = \big( 3y + 2x\big)^5.$$
Determine $z'_y(2,1)$.

Antwoord 1 correct
Fout
Antwoord 2 optie

$z'_y(2,1) = 36015.$

Antwoord 2 correct
Correct
Antwoord 3 optie

$z'_y(2,1) = 12005.$

Antwoord 3 correct
Fout
Antwoord 4 optie

$z'_y(2,1) = 24010.$

Antwoord 4 correct
Fout
Antwoord 1 optie

$z'_y(2,1) = 61440.$

Antwoord 1 feedback

Wrong: You probably plugged in wrong values for $x$ and $y$.

Try again.

Antwoord 2 feedback

Correct: We have to determine the partial derivative with respect to $y$. Hence, we can consider $x$ as a constant. Then the partial derivative of $z(x,y)$ with respect to $y$ is:


$$z'_y(x,y) = 5 \cdot \big(3y + 2x\big)^{5-1} \cdot (3 + 0) = 15\big(3y + 2x\big)^4.$$


Finally, we plug in $(x,y)=(2,1)$:


$$z'_y(2,1) = 15\big(3\cdot 1+2\cdot 2\big)^4 = 15 \cdot 7^4 = 36015.$$


Go on.

Antwoord 3 feedback

Wrong: Do not forget to apply the composite power rule.

See Extra explanation: special cases, Example 1, Example 2 and Example 3.

Antwoord 4 feedback

Wrong: With respect to which variabele should $z(x,y)$ be differentiated?

See Partial derivatives, Example 1, Example 2 and Example 3.