In this book you find the chain rule in three ways
- composite power function: if $y(x)=(v(x))^p$, then $y'(x)=(v(x))^{p-1}v'(x)$.
- composite exponential function: if $y(x)=a^{v(x)}$, then $y'(x)=a^{v(x)}v'(x)\ln a$.
- composite logarithmic function: if $y(x)=\;^a\!\log (v(x))$, then $y'(x)=\dfrac{v'(x)}{v(x) \ln a}$.