Determine the derivative of y(x)=25x2+3.
Antwoord 1 correct
Correct
Antwoord 2 optie
y′(x)=ln(2)25x2+3.
Antwoord 2 correct
Fout
Antwoord 3 optie
y′(x)=10x25x2+3.
Antwoord 3 correct
Fout
Antwoord 4 optie
This derivative cannot be determined.
Antwoord 4 correct
Fout
Antwoord 1 optie
y′(x)=10ln(2)x25x2+3.
Antwoord 1 feedback
Correct: In Composite function: Exercise 1 it is shown that y(x) can be written as u(v(x)) with v(x)=5x2+3 and u(v)=2v. By the use of the chain rule we find:
v′(x)=5⋅2x+0=10xu′(v)=2vln(2)=ln(2)2vy′(x)=u′(v(x))⋅v′(x)=ln(2)2v(x)⋅10x=10ln(2)x25x2+3.
Go on.
v′(x)=5⋅2x+0=10xu′(v)=2vln(2)=ln(2)2vy′(x)=u′(v(x))⋅v′(x)=ln(2)2v(x)⋅10x=10ln(2)x25x2+3.
Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Antwoord 4 feedback
Wrong: The derivative of y(x) can be determined by the use of the chain rule.
See Chain rule, Example 1 and Example 2.
See Chain rule, Example 1 and Example 2.