Determine the derivative of y(x)=25x2+3.
This derivative cannot be determined.
y(x)=ln(2)25x2+3.
y(x)=10x25x2+3.
y(x)=10ln(2)x25x2+3.
Determine the derivative of y(x)=25x2+3.
Antwoord 1 correct
Correct
Antwoord 2 optie
y(x)=ln(2)25x2+3.
Antwoord 2 correct
Fout
Antwoord 3 optie
y(x)=10x25x2+3.
Antwoord 3 correct
Fout
Antwoord 4 optie
This derivative cannot be determined.
Antwoord 4 correct
Fout
Antwoord 1 optie
y(x)=10ln(2)x25x2+3.
Antwoord 1 feedback
Correct: In Composite function: Exercise 1 it is shown that y(x) can be written as u(v(x)) with v(x)=5x2+3 and u(v)=2v. By the use of the chain rule we find:
v(x)=52x+0=10xu(v)=2vln(2)=ln(2)2vy(x)=u(v(x))v(x)=ln(2)2v(x)10x=10ln(2)x25x2+3.

Go on.
Antwoord 2 feedback
Wrong: Do not forget to multiply by v(x).

See Chain rule, Example 1 and Example 2.
Antwoord 3 feedback
Wrong: You probably miscalculated u(v)=2v: u(v)2v.

See Derivatives elemenatary functions.
Antwoord 4 feedback
Wrong: The derivative of y(x) can be determined by the use of the chain rule.

See Chain rule, Example 1 and Example 2.