Determine all the values of x such that the tangent line to the graph of the function y(x)=(x−1)(x2−1)3 is horizontal.
Antwoord 1 correct
Correct
Antwoord 2 optie
x=−1, x=−17, x=17, x=1
Antwoord 2 correct
Fout
Antwoord 3 optie
x=−1, x=0, x=1
Antwoord 3 correct
Fout
Antwoord 4 optie
x=1
Antwoord 4 correct
Fout
Antwoord 1 optie
x=−1, x=−17, x=1
Antwoord 1 feedback
Correct: y′(x)=(x2−1)3+(x−1)3(x2−1)2⋅2x=(x2−1)2((x2−1)+6x(x−1)).
The tangent line is horizontal if y′(x)=0. Hence, x2−1=0 or (x2−1)+6x(x−1)=0. x2−1=0 gives x=−1 or x=1.
(x2−1)+6x(x−1)=7x2−6x−1 and hence, we use the quadratic equation:
x1=6−√(−6)2−4⋅7⋅(−1)2⋅14=−17 and x2=6+√(−6)2−4⋅7⋅(−1)2⋅14=1.
Hence, x=−1, x=−17, x=1.
Go on.
The tangent line is horizontal if y′(x)=0. Hence, x2−1=0 or (x2−1)+6x(x−1)=0. x2−1=0 gives x=−1 or x=1.
(x2−1)+6x(x−1)=7x2−6x−1 and hence, we use the quadratic equation:
x1=6−√(−6)2−4⋅7⋅(−1)2⋅14=−17 and x2=6+√(−6)2−4⋅7⋅(−1)2⋅14=1.
Hence, x=−1, x=−17, x=1.
Go on.
Antwoord 2 feedback
Wrong: x=17 is not a solution of (x2−1)+6x(x−1)=0.
Try again.
Try again.
Antwoord 3 feedback
Antwoord 4 feedback