Determine all the values of x such that the tangent line to the graph of the function y(x)=(x1)(x21)3 is horizontal.
x=1
x=1, x=17, x=1
x=1, x=17, x=17, x=1
x=1, x=0, x=1
Determine all the values of x such that the tangent line to the graph of the function y(x)=(x1)(x21)3 is horizontal.
Antwoord 1 correct
Correct
Antwoord 2 optie
x=1, x=17, x=17, x=1
Antwoord 2 correct
Fout
Antwoord 3 optie
x=1, x=0, x=1
Antwoord 3 correct
Fout
Antwoord 4 optie
x=1
Antwoord 4 correct
Fout
Antwoord 1 optie
x=1, x=17, x=1
Antwoord 1 feedback
Correct: y(x)=(x21)3+(x1)3(x21)22x=(x21)2((x21)+6x(x1)).

The tangent line is horizontal if y(x)=0. Hence, x21=0 or (x21)+6x(x1)=0. x21=0 gives x=1 or x=1.

(x21)+6x(x1)=7x26x1 and hence, we use the quadratic equation:
x1=6(6)247(1)214=17 and x2=6+(6)247(1)214=1.

Hence, x=1, x=17, x=1.

Go on.
Antwoord 2 feedback
Wrong: x=17 is not a solution of (x21)+6x(x1)=0.

Try again.
Antwoord 3 feedback
Wrong: y(x)3(x1)(x21)22x.

Besides the chain rule you should also use the Productrule (film).
Antwoord 4 feedback
Wrong: The tangent line is not horizontal for f(0).

See Example 2 (film)