We consider the demand function X(p)=100(p−3)2, (p>3). We determine by the use of elasticity the approximate percentage change in X if p increases by 5%, given that p=10.
ϵ=X′(p)⋅pX(p)=−100⋅2(p−3)(p−3)4⋅p100(p−3)2=−200(p−3)3⋅(p−3)2p100=−2pp−3.
Hence, at p=10: ϵ=−2⋅1010−3=−207.
Therefore, %ΔX≈ϵ %Δp=−207⋅5=−1007=−1427.
ϵ=X′(p)⋅pX(p)=−100⋅2(p−3)(p−3)4⋅p100(p−3)2=−200(p−3)3⋅(p−3)2p100=−2pp−3.
Hence, at p=10: ϵ=−2⋅1010−3=−207.
Therefore, %ΔX≈ϵ %Δp=−207⋅5=−1007=−1427.