Introduction: A point of intersection of the graph of a function $y(x)$ with the $x$-axis can be determined by calculating a zero of the function $y(x)$.
Defintion: A zero of a function $y(x)$ is a solution of the equation $y(x)=0$.
Remark: A zero $a$ of the function $y(x)$ gives the point of intersection $(a,0)$ of the corresponding graph and the $x$-axis.
Example: We determine the zero of the function $N(t)=2t+3$.
$$\begin{align}
2t+3 = 0 & \Leftrightarrow 2t=-3\\
& \Leftrightarrow t=-\frac{3}{2}
\end{align}$$
The zero $-\frac{3}{2}$ result in the point of intersection $(-\frac{3}{2},0)$ of the corresponding graph with the $x$-axis.
Defintion: A zero of a function $y(x)$ is a solution of the equation $y(x)=0$.
Remark: A zero $a$ of the function $y(x)$ gives the point of intersection $(a,0)$ of the corresponding graph and the $x$-axis.
Example: We determine the zero of the function $N(t)=2t+3$.
$$\begin{align}
2t+3 = 0 & \Leftrightarrow 2t=-3\\
& \Leftrightarrow t=-\frac{3}{2}
\end{align}$$
The zero $-\frac{3}{2}$ result in the point of intersection $(-\frac{3}{2},0)$ of the corresponding graph with the $x$-axis.