Determine p such that 23log(5)3log(10)+3log(4)+3log(1)=3log(p).
p=0
p=20
p=4
p=10
Determine p such that 23log(5)3log(10)+3log(4)+3log(1)=3log(p).
Antwoord 1 correct
Correct
Antwoord 2 optie
p=20
Antwoord 2 correct
Fout
Antwoord 3 optie
p=4
Antwoord 3 correct
Fout
Antwoord 4 optie
p=0
Antwoord 4 correct
Fout
Antwoord 1 optie
p=10
Antwoord 1 feedback
Correct: 23log(5)3log(10)+3log(4)+3log(1)=3log(52)3log(10)+3log(4)+3log(1)=3log(25)3log(10)+3log(4)+3log(1)=3log(254110)=3log(10).

Hence, p=10.

Go on.
Antwoord 2 feedback
Wrong: 3log(25)3log(10)+3log(4)+3log(1)3log(2510+4+1).

See Properties logarithmic functions.
Antwoord 3 feedback
Wrong: 23log(5)3log(25).

See Properties logarithmic functions.
Antwoord 4 feedback
Wrong: 3log(25)3log(10)+3log(4)+3log(1)3log(104010).

See Properties logarithmic functions.