Determine the derivative of y(x)=3√x.
y′(x)=12√x.
This cannot be determined by the derivatives of elementary functions.
None of the other options is correct.
y′(x)=133√x2.
Correct: We first write y(x) as xa, hence y(x)=3√x=x13. Then we can apply the rule for power functions:
y′(x)=13x13−1=13x−23=13⋅1x23=13⋅1(x2)13=13⋅13√x2=133√x2.
Wrong: y(x) is a cube root, not a 'regular' square root.
See Example 2 and Power functions: extra explanation.
Wrong: This is possible, but you have to rewrite y(x) as xk.
See Example 2 en Power functions: extra explanation.
Wrong: The correct answer is shown. Maybe you need to rewrite your answer in order to find the correct one amongst them.