Determine the derivative of $y(x) = \sqrt[3]{x}$.

$y'(x) = \dfrac{1}{3\sqrt[3]{x^2}}$.

$y'(x) = \dfrac{1}{2\sqrt{x}}$.

This cannot be determined by the derivatives of elementary functions.

None of the other options is correct.

Determine the derivative of $y(x) = \sqrt[3]{x}$.

Antwoord 1 correct
Correct
Antwoord 2 optie

$y'(x) = \dfrac{1}{2\sqrt{x}}$.

Antwoord 2 correct
Fout
Antwoord 3 optie

This cannot be determined by the derivatives of elementary functions.

Antwoord 3 correct
Fout
Antwoord 4 optie

None of the other options is correct.

Antwoord 4 correct
Fout
Antwoord 1 optie

$y'(x) = \dfrac{1}{3\sqrt[3]{x^2}}$.

Antwoord 1 feedback

Correct: We first write $y(x)$ as $x^a$, hence $y(x) = \sqrt[3]{x} = x^{\tfrac{1}{3}}$. Then we can apply the rule for power functions:
$$
y'(x) = \dfrac{1}{3} x^{\tfrac{1}{3}-1} = \dfrac{1}{3} x^{-\tfrac{2}{3}} = \dfrac{1}{3}\cdot\dfrac{1}{x^{\tfrac{2}{3}}} = \dfrac{1}{3} \cdot \dfrac{1}{(x^2)^{\tfrac{1}{3}} = \dfrac{1}{3}\cdot\dfrac{1}{\sqrt[3]{x^2}}} = \dfrac{1}{3\sqrt[3]{x^2}}.
$$

Antwoord 2 feedback

Wrong: $y(x)$ is a cube root, not a 'regular' square root.

See Example 2 and Power functions: extra explanation.

Antwoord 3 feedback

Wrong: This is possible, but you have to rewrite $y(x)$ as $x^k$.

See Example 2 en Power functions: extra explanation.

Antwoord 4 feedback

Wrong: The correct answer is shown. Maybe you need to rewrite your answer in order to find the correct one amongst them.


See Example 2 en Power functions: extra explanation.