Determine the derivative of $g(t)=\dfrac{1}{t^2}$.
$g'(t)=\dfrac{-2}{t^3}$
That cannot be determined with only the list of derivatives of elementary functions.
$g'(t)=\dfrac{1}{2t}$
$g'(t)=\dfrac{1}{2t^3}$
Determine the derivative of $g(t)=\dfrac{1}{t^2}$.
Antwoord 1 correct
Correct
Antwoord 2 optie
That cannot be determined with only the list of derivatives of elementary functions.
Antwoord 2 correct
Fout
Antwoord 3 optie
$g'(t)=\dfrac{1}{2t}$
Antwoord 3 correct
Fout
Antwoord 4 optie
$g'(t)=\dfrac{1}{2t^3}$
Antwoord 4 correct
Fout
Antwoord 1 optie
$g'(t)=\dfrac{-2}{t^3}$
Antwoord 1 feedback
Correct: $g(t)=\dfrac{1}{t^2}=t^{-2}$.

$g'(t)=-2t^{-3}=\dfrac{-2}{t^3}$.

Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Wrong: Rewrite the function to the standard form of a power function.

See Derivatives elementary functions and Negative integer power functions.
Antwoord 4 feedback
Wrong: Rewrite the function to the standard form of a power function.

See Derivatives elementary functions and Negative integer power functions.