The function $z(x,y)$ is given by $z(x,y)=y\ln(x)-xe^y$. Determine the slope of the line tangent to the level curve through the point $(1,0)$.

None of the other answers is correct.

$0$

$1$

The slope is not defined in that point.

The function $z(x,y)$ is given by $z(x,y)=y\ln(x)-xe^y$. Determine the slope of the line tangent to the level curve through the point $(1,0)$.

Antwoord 1 correct
Correct
Antwoord 2 optie

$0$

Antwoord 2 correct
Fout
Antwoord 3 optie

$1$

Antwoord 3 correct
Fout
Antwoord 4 optie

The slope is not defined in that point.

Antwoord 4 correct
Fout
Antwoord 1 optie

None of the other answers is correct.

Antwoord 1 feedback

Correct: $$\begin{align*}
\dfrac{z'_x(x,y)}{z'_y(x,y)}&= \dfrac{\frac{y}{x}-e^y}{\ln(x)-xe^y}.
\end{align*}$$

$$\begin{align*}
\textrm{slope} &=- \dfrac{\frac{0}{1}-e^0}{\ln(1)-1\cdots^0}\\
&=-\dfrac{-1}{-1}\\
& = - 1.
\end{align*}$$

Go on.

Antwoord 2 feedback

Wrong: $e^0\neq 0$.

Try again or see Exponential functions.

Antwoord 3 feedback

Wrong: The slope is not equal to the quotient of the partial derivatives.

See Tangent line level curve.

Antwoord 4 feedback

Wrong: $z'_y(x,y)=\ln(x)-xe^y$.

Try again.