The function z(x,y) is given by z(x,y)=4x2y13. Determine the tangent line to the level curve through the point (5,1).
t(x)=615x65
t(x)=65x+615
t(x)=65x+7
t(x)=1125x65
The function z(x,y) is given by z(x,y)=4x2y13. Determine the tangent line to the level curve through the point (5,1).
Antwoord 1 correct
Correct
Antwoord 2 optie
t(x)=65x+615
Antwoord 2 correct
Fout
Antwoord 3 optie
t(x)=1125x65
Antwoord 3 correct
Fout
Antwoord 4 optie
t(x)=615x65
Antwoord 4 correct
Fout
Antwoord 1 optie
t(x)=65x+7
Antwoord 1 feedback
Correct: zx(x,y)zy(x,y)=8xy1343x2y23=6yx

slope=615=65.

Hence, t(x)=65x+b. Moreover, t(5)=655+b=1 gives b=7.

Consequently, t(x)=65x+7.

Go on.
Antwoord 2 feedback
Wrong: x=5 and y=1, not the other way around.

Try again.
Antwoord 3 feedback
Wrong: The slope of the tangent line is the number preceeding x.

Try again.
Antwoord 4 feedback
Wrong: The slope of the tangent line is the number preceeding x.

Try again.