The function z(x,y) is given by z(x,y)=4x2y13. Determine the tangent line to the level curve through the point (5,1).
Antwoord 1 correct
Correct
Antwoord 2 optie
t(x)=−65x+615
Antwoord 2 correct
Fout
Antwoord 3 optie
t(x)=1125x−65
Antwoord 3 correct
Fout
Antwoord 4 optie
t(x)=615x−65
Antwoord 4 correct
Fout
Antwoord 1 optie
t(x)=−65x+7
Antwoord 1 feedback
Correct: z′x(x,y)z′y(x,y)=8xy−1343x2y−23=6yx
slope=−6⋅15=−65.
Hence, t(x)=−65x+b. Moreover, t(5)=−65⋅5+b=1 gives b=7.
Consequently, t(x)=−65x+7.
Go on.
slope=−6⋅15=−65.
Hence, t(x)=−65x+b. Moreover, t(5)=−65⋅5+b=1 gives b=7.
Consequently, t(x)=−65x+7.
Go on.
Antwoord 2 feedback
Wrong: x=5 and y=1, not the other way around.
Try again.
Try again.
Antwoord 3 feedback
Wrong: The slope of the tangent line is the number preceeding x.
Try again.
Try again.
Antwoord 4 feedback
Wrong: The slope of the tangent line is the number preceeding x.
Try again.
Try again.