Determine all the extrema locations of the function y(x)=e2x6x.
x=2ln6 is a maximum location.
x=12ln3 is a minimum location.
x=0 is a minimum location.
x=0 is a maximum location.
Determine all the extrema locations of the function y(x)=e2x6x.
Antwoord 1 correct
Correct
Antwoord 2 optie
x=0 is a minimum location.
Antwoord 2 correct
Fout
Antwoord 3 optie
x=0 is a maximum location.
Antwoord 3 correct
Fout
Antwoord 4 optie
x=2ln6 is a maximum location.
Antwoord 4 correct
Fout
Antwoord 1 optie
x=12ln3 is a minimum location.
Antwoord 1 feedback
Correct: Putting the first-order derivative y(x)=2e2x6 equal to zero gives e2x=32x=ln3x=12ln3. Moreover, y(x)=4e2x>0 for all x. Hence, the function y(x) is convex, and hence x=12ln3 is a minimum location.

Go on.
Antwoord 2 feedback
Wrong: x=0 is not a stationary point.

See Stationary point.
Antwoord 3 feedback
Wrong: x=0 is not a stationary point.

See Stationary point.
Antwoord 4 feedback
Wrong: x=2ln6 is not a stationary point.

See Stationary point.