Determine all the extrema of the function y(x)=x3+2x.
The function value y(0)=0 is a minimum.
The function value y(0)=0 is a maximum.
The function value y(1)=3 is a maximum.
This function has no extrema.
Determine all the extrema of the function y(x)=x3+2x.
Antwoord 1 correct
Correct
Antwoord 2 optie
The function value y(0)=0 is a minimum.
Antwoord 2 correct
Fout
Antwoord 3 optie
The function value y(0)=0 is a maximum.
Antwoord 3 correct
Fout
Antwoord 4 optie
The function value y(1)=3 is a maximum.
Antwoord 4 correct
Fout
Antwoord 1 optie
This function has no extrema.
Antwoord 1 feedback
Correct: Putting the first-order derivative y(x)=3x2+2 equal to zero gives x2=23 and this equation has no solution.

Go on.
Antwoord 2 feedback
Wrong: The point x=0 is not a minimum location.

See saddle point.
Antwoord 3 feedback
Wrong: The point x=0 is not a maximum location.

See saddle point.
Antwoord 4 feedback
Wrong: The function is convex on the interval (0,). Hence, x=1 cannot be a maximum location.

See Convex and concave.