$y(x)=\;^4\!\log 2x$. Determine the second-order derivative $y''(x)$.
$y''(x)=-\dfrac{1}{x^2\cdot \textrm{ln}(4)}$
$y''(x)=\dfrac{1}{x \cdot \textrm{ln}(4)}$.
$y''(x)=-\dfrac{1}{2x^2\cdot \textrm{ln}(4)}$
$y''(x)=-\dfrac{1}{x^2}$
$y(x)=\;^4\!\log 2x$. Determine the second-order derivative $y''(x)$.
Antwoord 1 correct
Correct
Antwoord 2 optie
$y''(x)=\dfrac{1}{x \cdot \textrm{ln}(4)}$.
Antwoord 2 correct
Fout
Antwoord 3 optie
$y''(x)=-\dfrac{1}{2x^2\cdot \textrm{ln}(4)}$
Antwoord 3 correct
Fout
Antwoord 4 optie
$y''(x)=-\dfrac{1}{x^2}$
Antwoord 4 correct
Fout
Antwoord 1 optie
$y''(x)=-\dfrac{1}{x^2\cdot \textrm{ln}(4)}$
Antwoord 1 feedback
Correct: $y'(x)=\dfrac{1}{2x\textrm{ln}(4)}\cdot 2= \dfrac{1}{x \textrm{ln}(4)}=\dfrac{1}{\textrm{ln}(4)}\cdot x^{-1}$,
and $y''(x)=\dfrac{1}{\textrm{ln}(4)}\cdot -x^{-2}=-\dfrac{1}{x^2\cdot\textrm{ln}(4)}$.

Go on.
Antwoord 2 feedback
Wrong: You have to determine the second-order derivative.

Try again.
Antwoord 3 feedback
Wrong: $y'(x)\neq -\dfrac{1}{2x\cdot \textrm{ln}(4)}$.

See Chain rule.
Antwoord 4 feedback
Wrong: $y'(x)\neq \dfrac{1}{x}$.

See Derivatives of elementary functions.