y(x)=4log2x. Determine the second-order derivative y.
y''(x)=\dfrac{1}{x \cdot \textrm{ln}(4)}.
y''(x)=-\dfrac{1}{2x^2\cdot \textrm{ln}(4)}
y''(x)=-\dfrac{1}{x^2}
y''(x)=-\dfrac{1}{x^2\cdot \textrm{ln}(4)}
y(x)=\;^4\!\log 2x. Determine the second-order derivative y''(x).
Antwoord 1 correct
Correct
Antwoord 2 optie
y''(x)=\dfrac{1}{x \cdot \textrm{ln}(4)}.
Antwoord 2 correct
Fout
Antwoord 3 optie
y''(x)=-\dfrac{1}{2x^2\cdot \textrm{ln}(4)}
Antwoord 3 correct
Fout
Antwoord 4 optie
y''(x)=-\dfrac{1}{x^2}
Antwoord 4 correct
Fout
Antwoord 1 optie
y''(x)=-\dfrac{1}{x^2\cdot \textrm{ln}(4)}
Antwoord 1 feedback
Correct: y'(x)=\dfrac{1}{2x\textrm{ln}(4)}\cdot 2= \dfrac{1}{x \textrm{ln}(4)}=\dfrac{1}{\textrm{ln}(4)}\cdot x^{-1},
and y''(x)=\dfrac{1}{\textrm{ln}(4)}\cdot -x^{-2}=-\dfrac{1}{x^2\cdot\textrm{ln}(4)}.

Go on.
Antwoord 2 feedback
Wrong: You have to determine the second-order derivative.

Try again.
Antwoord 3 feedback
Wrong: y'(x)\neq -\dfrac{1}{2x\cdot \textrm{ln}(4)}.

See Chain rule.
Antwoord 4 feedback
Wrong: y'(x)\neq \dfrac{1}{x}.

See Derivatives of elementary functions.