y(x)=5^{3x^2+2}. Determine y''(x).
Antwoord 1 correct
Correct
Antwoord 2 optie
y''(x)=6\cdot 5^{3x^2+2}\cdot (1+\cdot 6 x^2)
Antwoord 2 correct
Fout
Antwoord 3 optie
y''(x)=5^{3x^2+2}\cdot (\textrm{ln}(5))^2
Antwoord 3 correct
Fout
Antwoord 4 optie
y''(x)=6\cdot 5^{3x^2+2}\cdot \textrm{ln}(5)\cdot (1+\textrm{ln}(5) \cdot x)
Antwoord 4 correct
Fout
Antwoord 1 optie
y''(x)=6\cdot 5^{3x^2+2}\cdot \textrm{ln}(5)\cdot (1+\textrm{ln}(5) \cdot 6 x^2)
Antwoord 1 feedback
Correct: y'(x)=5^{3x^2+2}\cdot \textrm{ln}(5)\cdot 6x, and
\begin{align*} y''(x) & =5^{3x^2+2}\cdot (\textrm{ln}(5))^2\cdot 6x \cdot 6x+5^{3x^2+2}\cdot \textrm{ln}(5)\cdot 6\\ & =6\cdot 5^{3x^2+2}\cdot \textrm{ln}(5)\cdot (1+\textrm{ln}(5) \cdot 6x^2). \end{align*}
Go on.
\begin{align*} y''(x) & =5^{3x^2+2}\cdot (\textrm{ln}(5))^2\cdot 6x \cdot 6x+5^{3x^2+2}\cdot \textrm{ln}(5)\cdot 6\\ & =6\cdot 5^{3x^2+2}\cdot \textrm{ln}(5)\cdot (1+\textrm{ln}(5) \cdot 6x^2). \end{align*}
Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Antwoord 4 feedback
Wrong: Do not forget the chain rule when differentiating the first-order derivative.
Try again.
Try again.