y(x)=53x2+2. Determine y.
y''(x)=5^{3x^2+2}\cdot (\textrm{ln}(5))^2
y''(x)=6\cdot 5^{3x^2+2}\cdot \textrm{ln}(5)\cdot (1+\textrm{ln}(5) \cdot 6 x^2)
y''(x)=6\cdot 5^{3x^2+2}\cdot (1+\cdot 6 x^2)
y''(x)=6\cdot 5^{3x^2+2}\cdot \textrm{ln}(5)\cdot (1+\textrm{ln}(5) \cdot  x)
y(x)=5^{3x^2+2}. Determine y''(x).
Antwoord 1 correct
Correct
Antwoord 2 optie
y''(x)=6\cdot 5^{3x^2+2}\cdot (1+\cdot 6 x^2)
Antwoord 2 correct
Fout
Antwoord 3 optie
y''(x)=5^{3x^2+2}\cdot (\textrm{ln}(5))^2
Antwoord 3 correct
Fout
Antwoord 4 optie
y''(x)=6\cdot 5^{3x^2+2}\cdot \textrm{ln}(5)\cdot (1+\textrm{ln}(5) \cdot  x)
Antwoord 4 correct
Fout
Antwoord 1 optie
y''(x)=6\cdot 5^{3x^2+2}\cdot \textrm{ln}(5)\cdot (1+\textrm{ln}(5) \cdot 6 x^2)
Antwoord 1 feedback
Correct: y'(x)=5^{3x^2+2}\cdot \textrm{ln}(5)\cdot 6x, and
\begin{align*} y''(x) & =5^{3x^2+2}\cdot (\textrm{ln}(5))^2\cdot 6x \cdot 6x+5^{3x^2+2}\cdot \textrm{ln}(5)\cdot 6\\ & =6\cdot 5^{3x^2+2}\cdot \textrm{ln}(5)\cdot (1+\textrm{ln}(5) \cdot 6x^2). \end{align*}

Go on.
Antwoord 2 feedback
Wrong: y'(x)\neq 5^{3x^2+2}\cdot 6x.

See Derivatives of elementary functions.
Antwoord 3 feedback
Wrong: y'(x) \neq 5^{3x^2+2}\cdot \textrm{ln}(5).

See Chain rule.
Antwoord 4 feedback
Wrong: Do not forget the chain rule when differentiating the first-order derivative.

Try again.