We determine the extrema of y(x)=−2x3+3x2+12x+5.
We use the following step-plan.
Step 1: Determine y′(x)
y′(x)=−6x2+6x+12.
Step 2: Determine stationary points
y′(x)=0⇔−6x2+6x+12=0⇔x2−x−2=0⇔(x−2)(x+1)=0⇔x=−1 or x=2.
Step 3: Determine y″(x)
y″(x)=−12x+6.
Step 4: Determine extremum locations
y″(−1)=18>0: x=−1 is a minimum location,
y″(2)=−18<0: x=2 is a maximum location.
Step 5: Determine extrema
y(−1)=−3
y(2)=25
Conclusion
y(−1)=−3 is a minimum
y(2)=25 is a maximum
Remark: Compare this result with the result in Example (film) and Example (film).