Determine all the extrema of y(x)=(5x1)e4x.
y(15)=0 is a maximum.
There are no extrema.
y(120)=114e15 is a minimum
The correct answer is not among the other options.
Determine all the extrema of y(x)=(5x-1)e^{4x}.
Antwoord 1 correct
Correct
Antwoord 2 optie
There are no extrema.
Antwoord 2 correct
Fout
Antwoord 3 optie
y(\frac{1}{5})=0 is a maximum.
Antwoord 3 correct
Fout
Antwoord 4 optie
The correct answer is not among the other options.
Antwoord 4 correct
Fout
Antwoord 1 optie
y(-\frac{1}{20})=-1\frac{1}{4}e^{-\frac{1}{5}} is a minimum
Antwoord 1 feedback
Correct: y'(x)=(20x+1)e^{4x}. Hence, the stationary point is x=-\frac{1}{20}. y''(x)=(80x+24)e^{4x}. Consequently, y''(-\frac{1}{20})=20e^{-\frac{1}{5}}>0 and hence, y(-\frac{1}{20})=-1\frac{1}{4}e^{-\frac{1}{5}} is a minimum.

Go on.
Antwoord 2 feedback
Wrong: y'(x)=5e^{4x}+(5x-1)\cdot e^{4x} \cdot 4.

See Chain rule.
Antwoord 3 feedback
Wrong: y'(x)=5e^{4x}+(5x-1)\cdot e^{4x} \cdot 4.

See Chain rule.
Antwoord 4 feedback
Wrong: The correct answer is among them.

Try again.