Determine all the extrema of z(x,y)=x2y+5xyy3.
  • z(0,0)=0 is a minimum
  • z(5,0)=0,is a minimum
  • (212,112)=36.15 is a maximum
  • z(212,112)=36.15 is a maximum
z(0,0)=0 is a minimum
There are no extrema.
  • z(0,0)=0 is a minimum
  • z(5,0)=0 is a minimum
Determine all the extrema of z(x,y)=x2y+5xyy3.
Antwoord 1 correct
Correct
Antwoord 2 optie
  • z(0,0)=0 is a minimum
  • z(5,0)=0 is a minimum
Antwoord 2 correct
Fout
Antwoord 3 optie
z(0,0)=0 is a minimum
Antwoord 3 correct
Fout
Antwoord 4 optie
  • z(0,0)=0 is a minimum
  • z(5,0)=0,is a minimum
  • (212,112)=36.15 is a maximum
  • z(212,112)=36.15 is a maximum
Antwoord 4 correct
Fout
Antwoord 1 optie
There are no extrema.
Antwoord 1 feedback
Correct: zx(x,y)=2xy+5y and zy(x,y)=x2+53y2. Hence, zx(x,y)=0 if y=0 or if x=212.

If we plug y=0 into zy(x,y) we get the equation x2+5x=0 with solutions x=0 and x=5.

If we plug x=12 into zy(x,y) we get the equation 6143y2=0, which has no solutions.

Hence, (x,y)=(0,0) and (x,y)=(5,0) are the stationary points.

zxx(x,y)=2y, zxy=2x+5 and zyy=6y. Hence, C(x,y)=12y2(2x+5)2.

Since C(0,0)=25<0 and C(5,0)=25<0, there are no extrema.


Go on.
Antwoord 2 feedback
Wrong: If C(c,d)<0, then stationary point (c,d) is a saddle point.

See Second-order condition extremum.
Antwoord 3 feedback
Wrong: If C(c,d)<0, then stationary point (c,d) is a saddle point.

See Second-order condition extremum.
Antwoord 4 feedback
Wrong: 6143y2=0 has no solutions.

Try again.