Determine all the extrema of z(x,y)=x^2-4xy+xy^2+y^3+2.
Antwoord 1 correct
Correct
Antwoord 2 optie
- z(-16,8)=1186 is a maximum
- z(0,0)=2 is a maximum
- z(1\frac{1}{2},1)=\frac{3}{4} is a minimum
Antwoord 2 correct
Fout
Antwoord 3 optie
There are no extrema.
Antwoord 3 correct
Fout
Antwoord 4 optie
None of the other answers is correct.
Antwoord 4 correct
Fout
Antwoord 1 optie
z(1\frac{1}{2},1)=\frac{3}{4} is a minimum
Antwoord 1 feedback
Correct:
\begin{align*} z'_y(x,y)& =-4x+2xy+3y^2\\ & = -4(2y-\frac{1}{2}y^2)+2(2y-\frac{1}{2}y^2)y+3y^2\\ & = -y^3+9y^2-8y\\ & = -y(y^2-9y+8). \end{align*}
Consequently, z'_y(x,y)=0 if y=0 (with x=0), y=1 (with x=1\frac{1}{2}) or y=8 (with x=-16).
Since C(0,0)=-16<0 and C(-16,8)=-112<0 both (0,0) and (-16,8) are saddle points.
Since C(1\frac{1}{2},1)=14>0 and z''_{xx}(1\frac{1}{2},1)=2>0 it holds that z(1\frac{1}{2},1)=\frac{3}{4} is a minimum.
Go on.
- z'_x(x,y)=2x-4y+y^2
- z'_y(x,y)=-4x+2xy+3y^2
\begin{align*} z'_y(x,y)& =-4x+2xy+3y^2\\ & = -4(2y-\frac{1}{2}y^2)+2(2y-\frac{1}{2}y^2)y+3y^2\\ & = -y^3+9y^2-8y\\ & = -y(y^2-9y+8). \end{align*}
Consequently, z'_y(x,y)=0 if y=0 (with x=0), y=1 (with x=1\frac{1}{2}) or y=8 (with x=-16).
- z''_{xx}=2
- z''_{yy}=2x+6y^2
- z''_{xy}=-4+2y
Since C(0,0)=-16<0 and C(-16,8)=-112<0 both (0,0) and (-16,8) are saddle points.
Since C(1\frac{1}{2},1)=14>0 and z''_{xx}(1\frac{1}{2},1)=2>0 it holds that z(1\frac{1}{2},1)=\frac{3}{4} is a minimum.
Go on.
Antwoord 2 feedback
Wrong: If C(c,d)<0, then that does not mean that the stationary point (c,d) is a maximum.
See Second-order condition extremum.
See Second-order condition extremum.
Antwoord 3 feedback
Wrong: (0,0) is not the only stationary point.
Try again.
Try again.
Antwoord 4 feedback
Wrong: The correct answer is among them.
Try again.
Try again.