Determine all the extrema of y(x)=(5x1)e4x.
There are no extrema.
The correct answer is not among the other options.
y(15)=0 is a maximum.
y(120)=114e15 is a minimum
Determine all the extrema of y(x)=(5x1)e4x.
Antwoord 1 correct
Correct
Antwoord 2 optie
There are no extrema.
Antwoord 2 correct
Fout
Antwoord 3 optie
y(15)=0 is a maximum.
Antwoord 3 correct
Fout
Antwoord 4 optie
The correct answer is not among the other options.
Antwoord 4 correct
Fout
Antwoord 1 optie
y(120)=114e15 is a minimum
Antwoord 1 feedback
Correct: y(x)=(20x+1)e4x. Hence, the stationary point is x=120. y(x)=(80x+24)e4x. Consequently, y(120)=20e15>0 and hence, y(120)=114e15 is a minimum.

Go on.
Antwoord 2 feedback
Wrong: y(x)=5e4x+(5x1)e4x4.

See Chain rule.
Antwoord 3 feedback
Wrong: y(x)=5e4x+(5x1)e4x4.

See Chain rule.
Antwoord 4 feedback
Wrong: The correct answer is among them.

Try again.