Determine all the extrema of $z(x,y)=x^2-4x+2xy+5y+y^2-\frac{1}{3}y^3+25$.
Antwoord 1 correct
Correct
Antwoord 2 optie
- $z(5,-3)=3$ is a minimum
- $z(-1,-3)=39$ is a minimum
Antwoord 2 correct
Fout
Antwoord 3 optie
$z(5,3)=75$ is a maximum
Antwoord 3 correct
Fout
Antwoord 4 optie
$z(0,1)=30\frac{2}{3}$ is a maximum
Antwoord 4 correct
Fout
Antwoord 1 optie
$z(5,-3)=3$ is a minimum
Antwoord 1 feedback
Correct:
Go on.
- $z'_x(x,y)=2x-4+2y$
- $z'_y(x,y)=2x+5+2y-y^2$
- $z''_{xx}(x,y)=2$
- $z''_{yy}(x,y)=2-2y$
- $z''_{xy}(x,y)=2$
Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Antwoord 4 feedback
Wrong: The fact that $z''_{yy}(0,1)=0$ does not tell you anything about the stationary points of the function.
See Second-order condition extremum
See Second-order condition extremum