Determine all the extrema locations of the function y(x)=e2x6x.
x=0 is a minimum location.
x=12ln3 is a minimum location.
x=2ln6 is a maximum location.
x=0 is a maximum location.
Determine all the extrema locations of the function y(x)=e^{2x}-6x.
Antwoord 1 correct
Correct
Antwoord 2 optie
x=0 is a minimum location.
Antwoord 2 correct
Fout
Antwoord 3 optie
x=0 is a maximum location.
Antwoord 3 correct
Fout
Antwoord 4 optie
x=2-\ln{6} is a maximum location.
Antwoord 4 correct
Fout
Antwoord 1 optie
x=\frac{1}{2}\ln{3} is a minimum location.
Antwoord 1 feedback
Correct: Putting the first-order derivative y'(x)=2e^{2x}-6 equal to zero gives e^{2x}=3\Rightarrow 2x=\ln{3}\Rightarrow x=\frac{1}{2}\ln{3}. Moreover, y''(x)=4e^{2x}>0 for all x. Hence, the function y(x) is convex, and hence x=\frac{1}{2}\ln{3} is a minimum location.

Go on.
Antwoord 2 feedback
Wrong: x=0 is not a stationary point.

See Stationary point.
Antwoord 3 feedback
Wrong: x=0 is not a stationary point.

See Stationary point.
Antwoord 4 feedback
Wrong: x=2-\ln{6} is not a stationary point.

See Stationary point.