Determine p and q such that (xy5x2)33y62x15=xpyq.
p=1, q=13
p=412, q=13
p=2, q=13
p=0, q=13
Determine p and q such that (xy5x2)33y62x15=xpyq.
Antwoord 1 correct
Correct
Antwoord 2 optie
p=1, q=13
Antwoord 2 correct
Fout
Antwoord 3 optie
p=412, q=13
Antwoord 3 correct
Fout
Antwoord 4 optie
p=2, q=13
Antwoord 4 correct
Fout
Antwoord 1 optie
p=0, q=13
Antwoord 1 feedback
Correct: (xy5x2)33y62x15=(x12y5x2)3y63x152=(x212y5)3y2x712=(x212)3(y5)3y2x712=x712y15y2x712=x0y13=y13.
Hence, p=0 and q=13.

Go on.
Antwoord 2 feedback
Wrong: x0=1.

See Positive integer power functions.
Antwoord 3 feedback
Wrong: x12x2x1.

See Properties power functions.
Antwoord 4 feedback
Wrong: (x212)3x512.

See Properties power functions.