Solve $16\cdot (2x^2)^4 = (8x^3)^5 \cdot (\frac{1}{4x^4})^2$.
Antwoord 1 correct
Correct
Antwoord 2 optie
$x=16^{\frac{1}{15}}$
Antwoord 2 correct
Fout
Antwoord 3 optie
$x=8^{\frac{8}{15}}$
Antwoord 3 correct
Fout
Antwoord 4 optie
$x=\frac{1}{16}$.
Antwoord 4 correct
Fout
Antwoord 1 optie
$x=8$
Antwoord 1 feedback
Correct: $$\begin{align*}
16\cdot (2x^2)^4 = (8x^3)^5 \cdot (\frac{1}{4x^4})^2 &\Leftrightarrow 2^4(2x^2)^4=(2^3x^3)^5 \cdot (2^{-2}x^{-4})^2\\
& \Leftrightarrow 2^4\cdot 2^4 \cdot x^8=2^{15}\cdot x^{15} \cdot 2^{-4}\cdot x^{-8}\\
& \Leftrightarrow 2^8 \cdot x^8=2^{11}\cdot x^7\\
& \Leftrightarrow x=2^3\\
& \Leftrightarrow x=8.
\end{align*}$$
Go on.
16\cdot (2x^2)^4 = (8x^3)^5 \cdot (\frac{1}{4x^4})^2 &\Leftrightarrow 2^4(2x^2)^4=(2^3x^3)^5 \cdot (2^{-2}x^{-4})^2\\
& \Leftrightarrow 2^4\cdot 2^4 \cdot x^8=2^{15}\cdot x^{15} \cdot 2^{-4}\cdot x^{-8}\\
& \Leftrightarrow 2^8 \cdot x^8=2^{11}\cdot x^7\\
& \Leftrightarrow x=2^3\\
& \Leftrightarrow x=8.
\end{align*}$$
Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Antwoord 4 feedback