Solve (x2+x2)(x3)>6(x1).
x>1
The correct answers is not among the other options.
x>0
Solve (x^2+x-2)(x-3) > -6(x-1).
Antwoord 1 correct
Correct
Antwoord 2 optie
x>0
Antwoord 2 correct
Fout
Antwoord 3 correct
Fout
Antwoord 4 optie
x>1
Antwoord 4 correct
Fout
Antwoord 1 optie
The correct answers is not among the other options.
Antwoord 1 feedback
Correct: \begin{align*} (x^2+x-2)(x-3) = -6(x-1) & \Leftrightarrow (x-1)(x+2)(x-3) =-6(x-1)\\ & \Leftrightarrow (x-1)(x^2-x-6)+6(x-1) = 0\\ & \Leftrightarrow (x-1)(x^2-x) = 0\\ & \Leftrightarrow x(x-1)^2 = 0\\ & \Leftrightarrow x = 1 \mbox{ or } x=0. \end{align*}

Since (x-1)^2>0 if x\neq 1, it must hold that x>0 and x\neq 1.
Antwoord 2 feedback
Wrong: (1^2+1-2)(1-3)=0 \ngtr 0= -6(1-1).

Try again.
Antwoord 3 feedback
Wrong: (2^2+2-2)(2-3)=-4> -6 = -6(2-1).

Try again.
Antwoord 4 feedback
Wrong: ((\frac{1}{2})^2+\frac{1}{2}-2)(\frac{1}{2}-3)=3\frac{1}{8} > 3 = -6(\frac{1}{2}-1).

Try again.