Consider the production function $P(t)=e^t\sqrt{t}$. Determine the rate of production at $t=4$.
$2\frac{1}{4}e^4$
$4e^4$
$4\frac{1}{2}$
$\frac{1}{4}e^4$
Consider the production function $P(t)=e^t\sqrt{t}$. Determine the rate of production at $t=4$.
Antwoord 1 correct
Correct
Antwoord 2 optie
$4e^4$
Antwoord 2 correct
Fout
Antwoord 3 optie
$4\frac{1}{2}$
Antwoord 3 correct
Fout
Antwoord 4 optie
$\frac{1}{4}e^4$
Antwoord 4 correct
Fout
Antwoord 1 optie
$2\frac{1}{4}e^4$
Antwoord 1 feedback
Correct: The rate of production is

$$\begin{align*}
P'(t)& =e^t\sqrt{t}+e^t\frac{1}{2\sqrt{t}}\\
& =e^t(\sqrt{t}+\frac{1}{2\sqrt{t}}).
\end{align*}$$

Hence, at $t=4$ this gives $P'(4)=e^4(\sqrt{4}+\frac{1}{2\sqrt{4}})=2\frac{1}{4}e^4$.

Go on.
Antwoord 2 feedback
Wrong: The rate of production at $t=4$ is not $P(4)$.

See Rate production process
Antwoord 3 feedback
Wrong: The production rate is not equal to the elasticity.

See Rate production process and Elasticity.
Antwoord 4 feedback
Wrong: You have to apply the product rule.

See Rules of differentiation.