The demand for a product depends on its price. Demand q can be modeled by the demand function q(p)=200p+4.
Now assume we wish to know the number of products needed for a particular price. Hence, we wish to know the inverse demand function p(q). We can find it by rewriting the demand function:
q=200p+4q⋅(p+4)=200p+4=200qp=200q−4.
Hence, the inverse demand function is p(q)=200q−4.
We can check whether the functions p(q) and q(p) indeed satisfy the property of the inverse function:
q(p(q))=200p(q)+4=200200q−4+4=200200q=200⋅q200=qenp(q(p))=200q(p)−4=200200p+4−4=200⋅p+4200−4=p+4−4=p.
Now assume we wish to know the number of products needed for a particular price. Hence, we wish to know the inverse demand function p(q). We can find it by rewriting the demand function:
q=200p+4q⋅(p+4)=200p+4=200qp=200q−4.
Hence, the inverse demand function is p(q)=200q−4.
We can check whether the functions p(q) and q(p) indeed satisfy the property of the inverse function:
q(p(q))=200p(q)+4=200200q−4+4=200200q=200⋅q200=qenp(q(p))=200q(p)−4=200200p+4−4=200⋅p+4200−4=p+4−4=p.